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Intrinsical Randomness of Kolmogorov Z“-Actions on
a Lebesgue Space

M. Courbage' and B. Kaminski®
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We introduce a concept of an intrinsically weak and strong randomness of
a Z%action on a Lebesgue space and we show that Kolmogorov Z%actions
are intrinsically weak random, and Bernoulli Z%actions are intrinsically strong
random.
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INTRODUCTION

The concept of an intrinsical randomness for one-dimensional dynamical
systems (actions of the group Z on a Lebesgue space) has been introduced
by several authors (see ref. 2 and references therein).

The intrinsically random systems are conjugated via a Markovian
operator with a non-invertible semigroup of Markovian operators which
monotonically converges to equilibrium.

It is shown in ref. 2 that all Kolmogorov systems are intrinsically
random.

Our aim is to consider a multidimensional analogue of the concept of
the intrinsical randomness.

In this paper, we define concepts of an intrinsically weak randomness
(IWR) and an intrinsically strong randomness (ISR) of a Z%action. These
definitions contain, apart from the direct extension of the one-dimensional
properties, a continuity condition, which has no corresponding property in
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the one-dimensional case. It is connected with the fact that the group Z¢
equipped with the lexicographical order has gaps.

First we show that IWR Z%actions are weakly mixing and ISR
Z%actions are not rigid.

Our main result says that all Kolmogorov (Bernoulli) Z%actions
satisfy the IWR (ISR) condition. If we interpret a Z%action on a Lebesgue
space as a temporal dynamical system with d — 1 symmetries, then an IWR
(ISR) Z%action is conjugated to a semigroup of Markovian operators
which converges to equilibrium both along time evolution and the action
of the symmetries.

RESULT

Let (X, 4, 1) be a Lebesgue probability space and let .4/" denote the
trivial sub-o-algebra of #4.

We denote by Z¢ the group of d-dimensional integers. Let < be the
lexicographical order of Z< and let 7I(N) stand for the set of positive
(negative) vectors of Z¢ with respect to <.

Let @ be a Z%action on (X, 4, u), ie., @ is a homomorphism of 74
into the group Aut(X, u) of all measure-preserving automorphisms of
(X, B, w).

We denote by @4 the automorphism of (X, 4, u), being the image of
geZ¢ under ®.

Let U= U, be the unitary representation of Z¢ in L*( X, u) defined by
the formula

Usf=f-®%,  fel*X,u), geZ’
ie., U acts by the Koopman operators associated with the automorphisms @¢,
geZ”

For a given g-algebra o/ = # and a function f'e L'(X, u), we denote
by E<f the conditional expectation of f given .. In particular, we put

Ef=E*f=| fdu

We apply in the sequel the following well known property of condi-
tional expectations

-1
U, E¥=E? “-U, (1)
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where ¢ is a given measure-preserving automorphism of (X, %, u) and U,,
is the Koopman unitary operator associated with ¢.

For a given finite measurable partition P of X, we denote by h(P, @)
the mean entropy of P with respect to @ and by A(®) the entropy of @.1: 7

Now we recall the definition of a Kolmogorov action (K-action) of Z¢
on a Lebesgue space.:>

An ordered pair (A4, B) of subsets of Z¢ is said to be a cut if they form
a non-trivial partition of Z¢ and for every ge 4 and he B we have g <h.

A cut (4, B) is called a gap if 4 does not contain the greatest element
and B does not contain the lowest element.

Definition 1. A Z%action @ is said to be a K-action if there exists
a g-algebra .o/ — 4 with

(1) P4 < .of for every gell,

d(ii) the family (®%.7), g€ Z% is continuous, i.e., for every gap (A4, B)
of Z¢ it holds

\/ @5 = () D5A

geAd g€eB

(i) Vyezs DA =B,
(iv) Ngezs PEA =N

It has been shown in ref. 5 that @ is a K-action iff @ has a completely
positive entropy, i.e., h(P, @)>0 for every non-trivial finite measurable
partition P of X.

The well-known examples of K-actions of Z¢ are Bernoullian actions
and Gaussian actions with absolutely continous spectral measures.

Goldstein has shown [4, Theorem 6.3] that every Poisson system of
periodic o-K-type (and in particular the Lorentz gas) is a K-action.

For simplicity of notations, we restrict ourselves in the sequel to the
case d=2. All our considerations may be easily extended to the general
case.

A Z?action @ is uniquely determined by the automorphisms
T=&"9 and S=@®Y. We call them the standard automorphisms
defined by @.

It is easy to observe that the definition of a K-action may be written
by the use of these automorphisms in the following way:

(') S~ ', T \ds< of
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where

+ oo
dg= \/ 8"
(') Ny _o S"ef =T "o,
(iii") V2 T"ds=AB,
(V') N2 Treds=AN.

A linear operator W of L*(X, u) is said to be doubly stochastic if it is
positive, W1 =1 and E- W=E, iec, if it is a Markov operator preserving u.

We shall consider in the sequel weak (w) and strong (s) limits of func-
tions defined on 77, and taking values in some Banach space.

We write

flg)—>x as g—

if for any ¢ > 0 there exists g, e IT with || f(g) — x| <e¢ for all g > g,.
On the other hand the notation

flg)>x as g—

means that for any ¢>0, there exists a finite subset F < I7 such that
| f(g)—x| <e for all geII\F.
It is clear that

fle)—x=flg)->x as g—

Definition 2. A Z?-action @ is called intrinsically weak (strong)
(IWR (ISR)) random if there exists a doubly stochastic operator A # E and
a semigroup (W, geIl) of doubly stochastic operators of L*(X, i) such
that

(a) for every g e Il, the following diagram commutes

h

X, u) —2— LA(X, p)

UgJ JWg
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(b) the function g— [|W,f, g€ 77 is non-increasing and continuous
for every fe L(X, u), ie.,

inf W] =sup |75 |

geB

for every gap (A4, B) of 72,

(¢) for every feL*X,u) with f>0 and Ef=1 the sequence
(IW#&f —1|, gell) is non-increasing and

Wef 2 1(WEf =5 1)
when g — 0.

It is obvious that every ISR-action is also an IWR-action.

First, we shall give a necessary condition for a Z*action to be IWR
(ISR).

A Z?-action @ is said to be weakly mixing if for every 4, Be #

1
lim — ) |u(®%A0B)—pu(4) u(B)| =0

n—>oo N ¢ER,
where
R,={(p.q)eZ*0<p,q<n—1}, n=>1

Similarly as in the case of Z-actions one shows that @ is weakly mixing
iff the equality

Uef =335 (mon)eZ% |yl =1kl =1, feL*(X.p), f#0

implies that fis a constant a.c.

Proposition 1. Every IWR Z2-action is weakly mixing.

Proof. Let feL*(X,u), f#0 and 4,, A, T be such that

yimmf =jmin{, (m, n)eZ?
It follows from (a) that
WmmAf = AU=MWf =Jmjn - (m,n)ell

If @ is IWR then

WesmAf ¥ EAf = Ef
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1e.,
s f 2 Ef

as (m, n) — oo.
But this is possible only in the case 1, =/4,=1 and so f = Ef a.e. This
means that @ is weakly mixing.

Remark 1. This result is to compare with a result of Misra‘®® which
shows that an intrinsically random Z-action is necessarily mixing.

Now we recall the concept of a rigid Z>-action.
A Z*action @ is said to be rigid® if there exists a sequence
(my, ny) = Z* such that (m,, n,) — o (ie., |my| + |n,| — o) and

lim u(@™™ 4 A A)=0

k— oo

for every A€ 4.
It is easy to show that @ is rigid, iff for some sequence (m,, n;) — o
and for every f e L*(X, u),

lim Uemf = f

k— o

Simple examples of rigid actions are actions with discrete spectrum
and a class of Gaussian actions with a singular spectral measure.®®

Proposition 2. If a Z?-action is ISR, then it is weakly mixing and
not rigid.

Proof. The first part of Proposition 2 follows at once from Proposition 1.

Let us now suppose @ is ISR and rigid. Let (m,, n,) be a sequence in
7? such that (m,, n,)— oo and U "f — f for every fe L*( X, u). One
can assume that (m,, n,) e Il, k = 1. It follows from (a) that

W e o A = Ao U~ e, k=1
Hence, taking the limit as k — oo, one obtains

lim W% " (Af) = Af

k— oo
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On the other hand the property (c) implies that
lim W%\ Af)= EAf = Ef

k— o
i.e., A= FE which is impossible.

Now we shall show our main results.

Theorem 1. Every K-action of Z? on a Lebesgue space is IWR.

Proof. Let & be a K-action of Z2, U the associated unitary represen-
tation in L%(X, u) and ./ the g-algebra satisfying (i)—(iv).
We put

A=E”,  WE=A-U"%,  gel?

It is clear that A4 and W¥, ge Z?* are doubly stochastic and A # E.
Let now g =(m, n) € Il. First we shall show that

AoU 8=W2o A (2)
Let .o/, = @£.o/. It follows from (1) that
U 2-E7cUs=E" (3)
Indeed, if T and S denote the standard automorphisms of @ then (1)
implies
U 2 EY=U;"cUg"oEY=UpmoUgno EY
=UpmoES"? o Ug s
=ET"S" cUp-moUg-n=E%U¢
Since g € IT the invariance of .o/ gives
E? E%=E"

Combining this equality with (3) we get (2).

The equality (2) implies that the operators W¥, ge Il form a semi-
group. Indeed, since the order > is compatible with the group operation
in 7% we have

Wete = fo U E+8)= Ao U 8o U ¢
=WeoAdo U &=WsoW¥

g g ell
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Now we shall check (b). It is enough to prove that

lim |W*nf||= lim [[WE2f), feL*(X,u)

"o +oo o —a
Applying (1) we have
IWEDf| = |EZ - Ug"f|| = |Ug"ES " f|| = |ES S|
and similarly
IWEnf = U US"ES™ T f | = | ET 57|

Taking the limit in the above two equalities and applying the condition
(i1") we obtain (b).

In order to prove (c) we take a function f'e L%(X, u) such that >0
and Ef = 1.

It follows from (3) that

[WSf =112 = | W2 =2E(W5f) + 1
= |E¥ > U~*f |2~ 1
= U E<-U=5f |~ 1
= IEf|P =1, gell (4)

If g, ¢g'ell and g< g’ then .o/ ,> .o/ , and so
IEZ=<f| = [|EZ=<f|

i.e., the sequence (|| W&f —1||, g € II) is non-increasing.
It follows from (iv) that

N A= () T "dsg=N
gell m=0

Let ¢>0 be arbitrary. By (4) and the Doob martingale convergence
theorem there exists m, e N such that, for every m >m, and ne Z, we have

[wemnf =12 = |ET "2 — 1
<IETsf)?—1

<¢g?
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Hence it is clear that for g =(m, n) > (m,, n,), where n, is arbitrary,
we have |Wef —1|| <e, ie., Wf > 1 as g — oo.

We shall show in the following example that there it may exist semi-
groups of doubly stochastic operators which satisfy (¢) but don’t satisfy (b).

Example. Let X be the infinite-dimensional torus T4 equipped with
the product g-algebra 4, u be the product measure on X determined by the
Lebesgue measure 4 on T and let ¢ be an irrational rotation on T.

Let =&, be a Z*-action on X generated by the following two
measure-preserving automorphisms 7" and S= S, of X defined by

(ITx)(n)=x(n+1), (Sx)(n) = px(n), neZ
1e.,
PE=T"- 8", (m, n)eZ?

Let QO be a two-element generating partition for ¢ and let P be the
partition of X induced by Q via the projection 7,: X — T on the zero coor-
dinate, ie., P=m, '(Q).

Let o/ be the smallest g-algebra containing the partitions @ ™P,
(m,n)ell.

It is easy to see that

A =Pv Pg v (Ps)r
where
o0 -+ oo o0
Py = \/ S~"P, Py= \/ S"P, (Ps)r = \/ T "Pg
n=1 n=—oo m=1

It is clear that .o is invariant and

\/ DA =5

gez?

Moreover, in our case S~ 'o/ =.«/. Indeed, since ¢ is a rotation the
smallest g-algebra containing the partitions ¢ ~"Q, n> 1 coincides with the
o-algebra # of the Lebesgue measurable sets of T. Hence P v Pg =Py
and so .o/ =Pgv (Pg); =S"'«/. Since u is the product measure the
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o-algebras T"Pg, ne Z are independent. Therefore the Kolmogorov zero-
one law implies

N 5/ = () T"(Ps)g =N
gez? n=0

We put W&=E“oU~¢, gell. One checks that (W?¥) is a semigroup
of doubly stochastic operators of L*(X, u) satisfying (c) in the same way as
in the proof of Theorem 1. Now we shall show that (b) is not satisfied.

Let fo(z) =z, ze T. The independence of Pg and (Pg); gives

l W(O’n)fooﬂoﬂ = ‘|ES7ano°”0”
= ||[EPs Y PO1f 01,

= HEPSfoonoH = |l foo ol

=j 12| A(dz) =1
.

On the other hand
lim | WEnf) = |[ET s fyom|
= |ET Psfyomo| =0

i.e., (b) does not hold.

Let now @ be a Bernoulli Z?-action on (X, %, 1) with finite entropy
and let P be a finite measurable partition of X such that the partitions
®EP, geZ? are independent and generate 4.

Theorem 2. Any Bernoulli Z*-action is ISR.

Proof. Let .o/ be the past g-algebra generated by P, ie., ./ is the
smallest g-algebra containing P and the partitions @4P, ge N. Applying
the standard automorphisms 7" and S of @ we may write </ in the form

oA =PvPg v (Ps)r
where

[¢e) + oo
P;=\/ S"P, Pg=\/ S"P

n=1 n=—oo
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It is well known® that .7 satisfies the conditions (i')—(iv'). Let W2,
g € P be the doubly stochastic operator defined in the proof of Theorem 1.

It is enough to show that
Wef =5 1 as g—

for every fe L3 (X,u), f >0 and Ef =1. We denote by %, the g-algebra
generated by all partitions of the form ®"P, h¢ R*, where

Ri={(i, ez’ —n<i,j<n}, n=1

By the Kolmogorow zero-one law we have

B, =N

n
1

DX}

n

Let ¢ >0 be arbitrary. By the Doob martingale convergence theorem there
exists 1, such that

|EZf|?2<1+¢ for n>n,
If ge I1\R,,, n>n, then </, < %, and so
IWef =112 = |E=f P = 1< [ E®f|I>—1<e
This means that
Wef =5 1 as g— o

Remark 2. It is not clear whether any K-action of Z? is ISR.
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