Intrinsical Randomness of Kolmogorov \mathbb{Z}^{d}-Actions on a Lebesgue Space

M. Courbage ${ }^{1}$ and B. Kamiński ${ }^{2}$

Received September 17, 1997; final November 10, 1998

Abstract

We introduce a concept of an intrinsically weak and strong randomness of a \mathbb{Z}^{d}-action on a Lebesgue space and we show that Kolmogorov \mathbb{Z}^{d}-actions are intrinsically weak random, and Bernoulli \mathbb{Z}^{d}-actions are intrinsically strong random.

KEY WORDS: Intrinsically weak randomness; intrinsically strong randomness; Kolmogorov \mathbb{Z}^{d}-actions; Bernoulli \mathbb{Z}^{d}-actions.

INTRODUCTION

The concept of an intrinsical randomness for one-dimensional dynamical systems (actions of the group \mathbb{Z} on a Lebesgue space) has been introduced by several authors (see ref. 2 and references therein).

The intrinsically random systems are conjugated via a Markovian operator with a non-invertible semigroup of Markovian operators which monotonically converges to equilibrium.

It is shown in ref. 2 that all Kolmogorov systems are intrinsically random.

Our aim is to consider a multidimensional analogue of the concept of the intrinsical randomness.

In this paper, we define concepts of an intrinsically weak randomness (IWR) and an intrinsically strong randomness (ISR) of a \mathbb{Z}^{d}-action. These definitions contain, apart from the direct extension of the one-dimensional properties, a continuity condition, which has no corresponding property in

[^0]the one-dimensional case. It is connected with the fact that the group \mathbb{Z}^{d} equipped with the lexicographical order has gaps.

First we show that IWR \mathbb{Z}^{d}-actions are weakly mixing and ISR \mathbb{Z}^{d}-actions are not rigid.

Our main result says that all Kolmogorov (Bernoulli) \mathbb{Z}^{d}-actions satisfy the IWR (ISR) condition. If we interpret a \mathbb{Z}^{d}-action on a Lebesgue space as a temporal dynamical system with $d-1$ symmetries, then an IWR (ISR) \mathbb{Z}^{d}-action is conjugated to a semigroup of Markovian operators which converges to equilibrium both along time evolution and the action of the symmetries.

RESULT

Let (X, \mathscr{B}, μ) be a Lebesgue probability space and let \mathscr{N} denote the trivial sub- σ-algebra of \mathscr{B}.

We denote by \mathbb{Z}^{d} the group of d-dimensional integers. Let \prec be the lexicographical order of \mathbb{Z}^{d} and let $\Pi(N)$ stand for the set of positive (negative) vectors of \mathbb{Z}^{d} with respect to \prec.

Let Φ be a \mathbb{Z}^{d}-action on (X, \mathscr{B}, μ), i.e., Φ is a homomorphism of \mathbb{Z}^{d} into the $\operatorname{group} \operatorname{Aut}(X, \mu)$ of all measure-preserving automorphisms of (X, \mathscr{B}, μ).

We denote by Φ^{g} the automorphism of (X, \mathscr{B}, μ), being the image of $g \in \mathbb{Z}^{d}$ under Φ.

Let $U=U_{\Phi}$ be the unitary representation of \mathbb{Z}^{d} in $L^{2}(X, \mu)$ defined by the formula

$$
U^{g} f=f \circ \Phi^{g}, \quad f \in L^{2}(X, \mu), \quad g \in \mathbb{Z}^{d}
$$

i.e., U acts by the Koopman operators associated with the automorphisms Φ^{g}, $g \in \mathbb{Z}^{d}$.

For a given σ-algebra $\mathscr{A} \subset \mathscr{B}$ and a function $f \in L^{1}(X, \mu)$, we denote by $E^{\mathscr{A}} f$ the conditional expectation of f given \mathscr{A}. In particular, we put

$$
E f=E^{\mathfrak{V}} f=\int_{X} f d \mu
$$

We apply in the sequel the following well known property of conditional expectations

$$
\begin{equation*}
U_{\varphi} \circ E^{\mathscr{A}}=E^{\varphi^{-1} \mathscr{A}} \circ U_{\varphi} \tag{1}
\end{equation*}
$$

where φ is a given measure-preserving automorphism of (X, \mathscr{B}, μ) and U_{φ} is the Koopman unitary operator associated with φ.

For a given finite measurable partition P of X, we denote by $h(P, \Phi)$ the mean entropy of P with respect to Φ and by $h(\Phi)$ the entropy of $\Phi .^{(1,7)}$

Now we recall the definition of a Kolmogorov action (K-action) of \mathbb{Z}^{d} on a Lebesgue space. ${ }^{(1,5)}$

An ordered pair (A, B) of subsets of \mathbb{Z}^{d} is said to be a cut if they form a non-trivial partition of \mathbb{Z}^{d} and for every $g \in A$ and $h \in B$ we have $g \prec h$.

A cut (A, B) is called a gap if A does not contain the greatest element and B does not contain the lowest element.

Definition 1. A \mathbb{Z}^{d}-action Φ is said to be a K -action if there exists a σ-algebra $\mathscr{A} \subset \mathscr{B}$ with
(i) $\Phi^{g} \mathscr{A} \subset \mathscr{A}$ for every $g \in \Pi$,
(ii) the family $\left(\Phi^{g} \mathscr{A}\right), g \in \mathbb{Z}^{d}$ is continuous, i.e., for every gap (A, B) of \mathbb{Z}^{d} it holds

$$
\bigvee_{g \in A} \Phi^{g} \mathscr{A}=\bigcap_{g \in B} \Phi^{g} \mathscr{A}
$$

(iii) $\bigvee_{g \in \mathbb{Z}^{d}} \Phi^{g} \mathscr{A}=\mathscr{B}$,
(iv) $\bigcap_{g \in \mathbb{Z}^{d}} \Phi^{g} \mathscr{A}=\mathcal{N}$.

It has been shown in ref. 5 that Φ is a K-action iff Φ has a completely positive entropy, i.e., $h(P, \Phi)>0$ for every non-trivial finite measurable partition P of X.

The well-known examples of K -actions of \mathbb{Z}^{d} are Bernoullian actions and Gaussian actions with absolutely continous spectral measures.

Goldstein has shown [4, Theorem 6.3] that every Poisson system of periodic σ-K-type (and in particular the Lorentz gas) is a K-action.

For simplicity of notations, we restrict ourselves in the sequel to the case $d=2$. All our considerations may be easily extended to the general case.

A \mathbb{Z}^{2}-action Φ is uniquely determined by the automorphisms $T=\Phi^{(1,0)}$ and $S=\Phi^{(0,1)}$. We call them the standard automorphisms defined by Φ.

It is easy to observe that the definition of a K-action may be written by the use of these automorphisms in the following way:

$$
S^{-1} \mathscr{A} \subset \mathscr{A}, T^{-1} \mathscr{A}_{S} \subset \mathscr{A}
$$

where

$$
\mathscr{A}_{S}=\bigvee_{n=-\infty}^{+\infty} S^{n} \mathscr{A}
$$

(ii') $\bigcap_{n=-\infty}^{\infty} S^{n} \mathscr{A}=T^{-1} \mathscr{A}_{S}$,
(iii') $\bigvee_{n=-\infty}^{+\infty} T^{n} \mathscr{A}_{S}=\mathscr{B}$,
(iv') $\bigcap_{n=-\infty}^{+\infty} T^{n} \mathscr{A}_{S}=\mathscr{N}$.
A linear operator W of $L^{2}(X, \mu)$ is said to be doubly stochastic if it is positive, $W 1=1$ and $E \circ W=E$, i.e., if it is a Markov operator preserving μ.

We shall consider in the sequel weak (w) and strong (s) limits of functions defined on Π, and taking values in some Banach space.

We write

$$
f(g) \xrightarrow{w} x \quad \text { as } \quad g \longrightarrow \infty
$$

if for any $\varepsilon>0$ there exists $g_{o} \in \Pi$ with $\|f(g)-x\|<\varepsilon$ for all $g>g_{o}$.
On the other hand the notation

$$
f(g) \xrightarrow{s} x \quad \text { as } \quad g \longrightarrow \infty
$$

means that for any $\varepsilon>0$, there exists a finite subset $F \subset \Pi$ such that $\|f(g)-x\|<\varepsilon$ for all $g \in \Pi \backslash F$.

It is clear that

$$
f(g) \xrightarrow{s} x \Rightarrow f(g) \xrightarrow{w} x \quad \text { as } \quad g \longrightarrow \infty
$$

Definition 2. A \mathbb{Z}^{2}-action Φ is called intrinsically weak (strong) (IWR (ISR)) random if there exists a doubly stochastic operator $\Lambda \neq E$ and a semigroup ($W^{g}, g \in \Pi$) of doubly stochastic operators of $L^{2}(X, \mu)$ such that
(a) for every $g \in \Pi$, the following diagram commutes

(b) the function $g \rightarrow\left\|W_{g} f\right\|, g \in \mathbb{Z}^{2}$ is non-increasing and continuous for every $f \in L^{2}(X, \mu)$, i.e.,

$$
\inf _{g \in A}\left\|W^{g} f\right\|=\sup _{g \in B}\left\|W^{g} f\right\|
$$

for every gap (A, B) of \mathbb{Z}^{2},
(c) for every $f \in L^{2}(X, \mu)$ with $f \geqslant 0$ and $E f=1$ the sequence $\left(\left\|W^{g} f-1\right\|, g \in \Pi\right)$ is non-increasing and

$$
W^{g} f \xrightarrow{w} 1\left(W^{g} f \xrightarrow{s} 1\right)
$$

when $g \rightarrow \infty$.
It is obvious that every ISR-action is also an IWR-action.
First, we shall give a necessary condition for a \mathbb{Z}^{2}-action to be IWR (ISR).

A \mathbb{Z}^{2}-action Φ is said to be weakly mixing if for every $A, B \in \mathscr{B}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{g \in R_{n}}\left|\mu\left(\Phi^{g} A \cap B\right)-\mu(A) \mu(B)\right|=0
$$

where

$$
R_{n}=\left\{(p, q) \in \mathbb{Z}^{2} ; 0 \leqslant p, q \leqslant n-1\right\}, \quad n \geqslant 1
$$

Similarly as in the case of \mathbb{Z}-actions one shows that Φ is weakly mixing iff the equality

$$
U^{(m, n)} f=\lambda_{1}^{m} \lambda_{2}^{n} f, \quad(m, n) \in \mathbb{Z}^{2}, \quad\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1, \quad f \in L^{2}(X, \mu), \quad f \neq 0
$$ implies that f is a constant a.e.

Proposition 1. Every IWR \mathbb{Z}^{2}-action is weakly mixing.
Proof. Let $f \in L^{2}(X, \mu), f \neq 0$ and $\lambda_{1}, \lambda_{2} \in \mathbb{T}$ be such that

$$
U^{(m, n)} f=\lambda_{1}^{m} \lambda_{2}^{n} f, \quad(m, n) \in \mathbb{Z}^{2}
$$

It follows from (a) that

$$
W^{(m, n)} \Lambda f=\Lambda U^{-(m, n)} f=\bar{\lambda}_{1}^{m} \bar{\lambda}_{2}^{n} f, \quad(m, n) \in \Pi
$$

If Φ is IWR then

$$
W^{(m, n)} \Lambda f \xrightarrow{w} E \Lambda f=E f
$$

i.e.,

$$
\bar{\lambda}_{1}^{m} \bar{\lambda}_{2}^{n} f \xrightarrow{w} E f
$$

as $(m, n) \rightarrow \infty$.
But this is possible only in the case $\lambda_{1}=\lambda_{2}=1$ and so $f=E f$ a.e. This means that Φ is weakly mixing.

Remark 1. This result is to compare with a result of Misra ${ }^{(8)}$ which shows that an intrinsically random \mathbb{Z}-action is necessarily mixing.

Now we recall the concept of a rigid \mathbb{Z}^{2}-action.
A \mathbb{Z}^{2}-action Φ is said to be rigid ${ }^{(3)}$ if there exists a sequence $\left(m_{k}, n_{k}\right) \subset \mathbb{Z}^{2}$ such that $\left(m_{k}, n_{k}\right) \rightarrow \infty$ (i.e., $\left.\left|m_{k}\right|+\left|n_{k}\right| \rightarrow \infty\right)$ and

$$
\lim _{k \rightarrow \infty} \mu\left(\Phi^{\left(m_{k}, n_{k}\right)} A \triangle A\right)=0
$$

for every $A \in \mathscr{B}$.
It is easy to show that Φ is rigid, iff for some sequence $\left(m_{k}, n_{k}\right) \rightarrow \infty$ and for every $f \in L^{2}(X, \mu)$,

$$
\lim _{k \rightarrow \infty} U^{\left(m_{k}, n_{k}\right)} f=f
$$

Simple examples of rigid actions are actions with discrete spectrum and a class of Gaussian actions with a singular spectral measure. ${ }^{(3,6)}$

Proposition 2. If a \mathbb{Z}^{2}-action is ISR, then it is weakly mixing and not rigid.

Proof. The first part of Proposition 2 follows at once from Proposition 1.
Let us now suppose Φ is ISR and rigid. Let $\left(m_{k}, n_{k}\right)$ be a sequence in \mathbb{Z}^{2} such that $\left(m_{k}, n_{k}\right) \rightarrow \infty$ and $U^{\left(m_{k}, n_{k}\right)} f \rightarrow f$ for every $f \in L^{2}(X, \mu)$. One can assume that $\left(m_{k}, n_{k}\right) \in \Pi, k \geqslant 1$. It follows from (a) that

Hence, taking the limit as $k \rightarrow \infty$, one obtains

$$
\lim _{k \rightarrow \infty} W^{\left(m_{k}, n_{k}\right)}(\Lambda f)=\Lambda f
$$

On the other hand the property (c) implies that

$$
\lim _{k \rightarrow \infty} W^{\left(m_{k}, n_{k}\right)}(\Lambda f)=E \Lambda f=E f
$$

i.e., $\Lambda=E$ which is impossible.

Now we shall show our main results.
Theorem 1. Every K -action of \mathbb{Z}^{2} on a Lebesgue space is IWR.
Proof. Let Φ be a K-action of \mathbb{Z}^{2}, U the associated unitary representation in $L^{2}(X, \mu)$ and \mathscr{A} the σ-algebra satisfying (i)-(iv).

We put

$$
\Lambda=E^{\mathscr{A}}, \quad W^{g}=\Lambda \circ U^{-g}, \quad g \in \mathbb{Z}^{2}
$$

It is clear that Λ and $W^{g}, g \in \mathbb{Z}^{2}$ are doubly stochastic and $\Lambda \neq E$.
Let now $g=(m, n) \in \Pi$. First we shall show that

$$
\begin{equation*}
\Lambda \circ U^{-g}=W^{g} \circ \Lambda \tag{2}
\end{equation*}
$$

Let $\mathscr{A}_{g}=\Phi^{g} \mathscr{A}$. It follows from (1) that

$$
\begin{equation*}
U^{-g} \circ E^{\mathscr{A}} \circ U^{g}=E^{\mathscr{A} g} \tag{3}
\end{equation*}
$$

Indeed, if T and S denote the standard automorphisms of Φ then (1) implies

$$
\begin{aligned}
& U^{-g} \circ E^{\mathscr{A}}=U_{T}^{-m} \circ U_{S}^{-n} \circ E^{\mathscr{A}}=U_{T^{-m}} \circ U_{S^{-n} \circ} E^{\mathscr{A}} \\
&=U_{T^{-m} \circ E^{S^{n} \mathscr{A}} \circ U_{S^{-n}}} \\
&=E^{T^{m} S^{n} \mathscr{A}} \circ U_{T^{-m}} \circ U_{S^{-n}}=E^{\mathscr{A}} U^{-g}
\end{aligned}
$$

Since $g \in \Pi$ the invariance of \mathscr{A} gives

$$
E^{\mathscr{A}} \circ E^{\mathscr{A} g}=E^{\mathscr{A}}
$$

Combining this equality with (3) we get (2).
The equality (2) implies that the operators $W^{g}, g \in \Pi$ form a semigroup. Indeed, since the order \succ is compatible with the group operation in \mathbb{Z}^{2} we have

$$
\begin{aligned}
W^{g+g^{\prime}} & =\Lambda \circ U^{-\left(g+g^{\prime}\right)}=\Lambda \circ U^{-g} \circ U^{-g^{\prime}} \\
& =W^{g} \circ \Lambda \circ U^{-g^{\prime}}=W^{g} \circ W^{g^{\prime}}
\end{aligned}
$$

$g, g^{\prime} \in \Pi$.

Now we shall check (b). It is enough to prove that

$$
\lim _{n \rightarrow+\infty}\left\|W^{(0, n)} f\right\|=\lim _{n \rightarrow-\infty}\left\|W^{(1, n)} f\right\|, \quad f \in L^{2}(X, \mu)
$$

Applying (1) we have

$$
\left\|W^{0, n)} f\right\|=\left\|E^{\mathscr{A}} \circ U_{S}^{-n} f\right\|=\left\|U_{S}^{-n} E^{S^{-n} \mathscr{A}} f\right\|=\left\|E^{S^{-n} \mathscr{A}} f\right\|
$$

and similarly

$$
\left\|W^{(1, n)} f\right\|=\left\|U_{T}^{-1} U_{S}^{-n} E^{S^{-n} T^{-1} \mathscr{A}} f\right\|=\left\|E^{T^{-1} S^{-n} \mathscr{A}} f\right\|
$$

Taking the limit in the above two equalities and applying the condition (ii') we obtain (b).

In order to prove (c) we take a function $f \in L^{2}(X, \mu)$ such that $f \geqslant 0$ and $E f=1$.

It follows from (3) that

$$
\begin{align*}
\left\|W^{g} f-1\right\|^{2} & =\left\|W^{g} f\right\|^{2}-2 E\left(W^{g} f\right)+1 \\
& =\left\|E^{\mathscr{A}} \circ U^{-g} f\right\|^{2}-1 \\
& =\left\|U^{g} \circ E^{\mathscr{A}} \circ U^{-g} f\right\|^{2}-1 \\
& =\left\|E^{\mathscr{A}-g} f\right\|^{2}-1, \quad g \in \Pi \tag{4}
\end{align*}
$$

If $g, g^{\prime} \in \Pi$ and $g \prec g^{\prime}$ then $\mathscr{A}_{-g} \supset \mathscr{A}_{-g^{\prime}}$ and so

$$
\left\|E^{\mathscr{A}-g} f\right\| \geqslant\left\|E^{\mathscr{A}-g^{\prime}} f\right\|
$$

i.e., the sequence ($\left\|W^{g} f-1\right\|, g \in \Pi$) is non-increasing.

It follows from (iv) that

$$
\bigcap_{g \in \Pi} \mathscr{A}_{-g}=\bigcap_{m=0}^{\infty} T^{-m} \mathscr{A}_{S}=\mathscr{N}
$$

Let $\varepsilon>0$ be arbitrary. By (4) and the Doob martingale convergence theorem there exists $m_{o} \in \mathbb{N}$ such that, for every $m>m_{o}$ and $n \in \mathbb{Z}$, we have

$$
\begin{aligned}
\left\|W^{(m, n)} f-1\right\|^{2} & =\left\|E^{T^{-m} S^{-n} \mathscr{A}} f\right\|^{2}-1 \\
& \leqslant\left\|E^{T^{-m} \mathscr{A}} s f\right\|^{2}-1 \\
& <\varepsilon^{2}
\end{aligned}
$$

Hence it is clear that for $g=(m, n)\rangle\left(m_{o}, n_{o}\right)$, where n_{o} is arbitrary, we have $\left\|W^{g} f-1\right\|<\varepsilon$, i.e., $W^{g} f \xrightarrow{w} 1$ as $g \rightarrow \infty$.

We shall show in the following example that there it may exist semigroups of doubly stochastic operators which satisfy (c) but don't satisfy (b).

Example. Let X be the infinite-dimensional torus $\mathbb{T}^{\mathbb{Z}}$ equipped with the product σ-algebra \mathscr{B}, μ be the product measure on X determined by the Lebesgue measure λ on \mathbb{T} and let φ be an irrational rotation on \mathbb{T}.

Let $\Phi=\Phi_{\varphi}$ be a \mathbb{Z}^{2}-action on X generated by the following two measure-preserving automorphisms T and $S=S_{\varphi}$ of X defined by

$$
(T x)(n)=x(n+1), \quad(S x)(n)=\varphi x(n), \quad n \in \mathbb{Z}
$$

i.e.,

$$
\Phi^{g}=T^{m} \circ S^{n}, \quad(m, n) \in \mathbb{Z}^{2}
$$

Let Q be a two-element generating partition for φ and let P be the partition of X induced by Q via the projection $\pi_{0}: X \rightarrow \mathbb{\mathbb { T }}$ on the zero coordinate, i.e., $P=\pi_{0}^{-1}(Q)$.

Let \mathscr{A} be the smallest σ-algebra containing the partitions $\Phi^{(m, n)} P$, $(m, n) \in \Pi$.

It is easy to see that

$$
\mathscr{A}=P \vee P_{S}^{-} \vee\left(P_{S}\right)_{T}^{-}
$$

where

$$
P_{S}^{-}=\bigvee_{n=1}^{\infty} S^{-n} P, \quad P_{S}=\bigvee_{n=-\infty}^{+\infty} S^{n} P, \quad\left(P_{S}\right)_{T}^{-}=\bigvee_{m=1}^{\infty} T^{-m} P_{S}
$$

It is clear that \mathscr{A} is invariant and

$$
\bigvee_{g \in \mathbb{Z}^{2}} \Phi^{g} \mathscr{A}=\mathscr{B}
$$

Moreover, in our case $S^{-1} \mathscr{A}=\mathscr{A}$. Indeed, since φ is a rotation the smallest σ-algebra containing the partitions $\varphi^{-n} Q, n \geqslant 1$ coincides with the σ-algebra \mathscr{F} of the Lebesgue measurable sets of \mathbb{T}. Hence $P \vee P_{S}^{-}=P_{S}$ and so $\mathscr{A}=P_{S} \vee\left(P_{S}\right)_{T}^{-}=S^{-1} \mathscr{A}$. Since μ is the product measure the
σ-algebras $T^{n} P_{S}, n \in \mathbb{Z}$ are independent. Therefore the Kolmogorov zeroone law implies

$$
\bigcap_{g \in \mathbb{Z}^{2}} \Phi^{g} \mathscr{A}=\bigcap_{n=0}^{\infty} T^{-n}\left(P_{S}\right)_{T}^{-}=\mathscr{N}
$$

We put $W^{g}=E^{\mathscr{A}} \circ U^{-g}, g \in \Pi$. One checks that $\left(W^{g}\right)$ is a semigroup of doubly stochastic operators of $L^{2}(X, \mu)$ satisfying (c) in the same way as in the proof of Theorem 1. Now we shall show that (b) is not satisfied.

Let $f_{0}(z)=z, z \in \mathbb{T}$. The independence of P_{S} and $\left(P_{S}\right)_{T}$ gives

$$
\begin{aligned}
\left\|W^{(0, n)} f_{0} \circ \pi_{0}\right\| & =\left\|E^{S^{-n} \mathscr{A}} f_{0} \circ \pi_{0}\right\| \\
& =\left\|E^{P_{S} \vee\left(P_{S}\right) \bar{T}} f_{0} \circ \pi_{0}\right\| \\
& =\left\|E^{P_{S}} f_{0} \circ \pi_{0}\right\|=\left\|f_{0} \circ \pi_{0}\right\| \\
& =\int_{\mathbb{T}}|z| \lambda(d z)=1
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|W^{(1, n)} f\right\| & =\left\|E^{T^{-1} \mathscr{A}_{S}} f_{0} \circ \pi_{0}\right\| \\
& =\left\|E^{T^{-1} P_{S}} f_{0} \circ \pi_{0}\right\|=0
\end{aligned}
$$

i.e., (b) does not hold.

Let now Φ be a Bernoulli \mathbb{Z}^{2}-action on (X, \mathscr{B}, μ) with finite entropy and let P be a finite measurable partition of X such that the partitions $\Phi^{g} P, g \in \mathbb{Z}^{2}$ are independent and generate \mathscr{B}.

Theorem 2. Any Bernoulli \mathbb{Z}^{2}-action is ISR.
Proof. Let \mathscr{A} be the past σ-algebra generated by P, i.e., \mathscr{A} is the smallest σ-algebra containing P and the partitions $\Phi^{g} P, g \in N$. Applying the standard automorphisms T and S of Φ we may write \mathscr{A} in the form

$$
\mathscr{A}=P \vee P_{S}^{-} \vee\left(P_{S}\right)_{T}^{-}
$$

where

$$
P_{S}^{-}=\bigvee_{n=1}^{\infty} S^{-n} P, \quad P_{S}=\bigvee_{n=-\infty}^{+\infty} S^{n} P
$$

It is well known ${ }^{(5)}$ that \mathscr{A} satisfies the conditions $\left(\mathrm{i}^{\prime}\right)-\left(\mathrm{iv}{ }^{\prime}\right)$. Let W^{g}, $g \in P$ be the doubly stochastic operator defined in the proof of Theorem 1.

It is enough to show that

$$
W^{g} f \xrightarrow{s} 1 \quad \text { as } \quad g \longrightarrow \infty
$$

for every $f \in L^{2}(X, \mu), f \geqslant 0$ and $E f=1$. We denote by \mathscr{B}_{n} the σ-algebra generated by all partitions of the form $\Phi^{h} P, h \notin R_{n}^{*}$, where

$$
R_{n}^{*}=\left\{(i, j) \in \mathbb{Z}^{2} ;-n \leqslant i, j \leqslant n\right\}, \quad n \geqslant 1
$$

By the Kolmogorow zero-one law we have

$$
\bigcap_{n=1}^{\infty} \mathscr{B}_{n}=\mathscr{N}
$$

Let $\varepsilon>0$ be arbitrary. By the Doob martingale convergence theorem there exists n_{0} such that

$$
\left\|E^{\mathscr{B}_{n}} f\right\|^{2}<1+\varepsilon \quad \text { for } \quad n>n_{0}
$$

If $g \in \Pi \backslash R_{n}, n>n_{0}$ then $\mathscr{A}_{-g} \subset \mathscr{B}_{n}$ and so

$$
\left\|W^{g} f-1\right\|^{2}=\left\|E^{\mathscr{A}}-g f\right\|^{2}-1 \leqslant\left\|E^{\mathscr{F}_{n}} f\right\|^{2}-1<\varepsilon
$$

This means that

$$
W^{g} f \xrightarrow{s} 1 \quad \text { as } \quad g \longrightarrow \infty
$$

Remark 2. It is not clear whether any K-action of \mathbb{Z}^{2} is ISR.

ACKNOWLEDGMENT

The second author was supported by KBN Grant 2P 301031107.

REFERENCES

1. J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahr. verw. Geb. 25:11-30 (1972).
2. M. Courbage, S. Goldstein, and B. Misra, On intrinsic randomness of dynamical systems, J. Stat. Phys. 25:111-126 (1981).
3. S. Ferenczi and B. Kamiński, Zero entropy and directional Bernoullicity of a Gaussian \mathbb{Z}^{2}-action, Proc. Amer. Math. Soc. 123:3079-3083 (1995).
4. S. Goldstein, Space-time ergodic proprietes of systems of infinitely many independent particles, Commun. Math. Phys. 39:303-327 (1975).
5. B. Kamiński, The theory of invariant partitions for \mathbb{Z}^{d}-actions, Bull. Polish Acad. Sci. Math. 29:349-362 (1981).
6. B. Kamiński and K. K. Park, On the directional entropy for \mathbb{Z}^{2}-actions on a Lebesgue space, Studia Math. 133:39-51 (1999).
7. Y. Katznelson and B. Weiss, Commuting measure-preserving transformations, Isr. J. Math. 12:161-173 (1972).
8. B. Misra, Nonequilibrium entropy, Lyapunov variables, and ergodic properties of classical systems, Proc. Natl. Acad. Sci. USA 75:1627-1631 (1978).

[^0]: ${ }^{1}$ Laboratoire de Probabilité, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France.
 ${ }^{2}$ Faculty of Mathematics and Informatics, Nicholas Copernicus University, 87-100 Toruń, Poland.

