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Intrinsical Randomness of Kolmogorov Zd-Actions on
a Lebesgue Space
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We introduce a concept of an intrinsically weak and strong randomness of
a Zd-action on a Lebesgue space and we show that Kolmogorov Zd-actions
are intrinsically weak random, and Bernoulli Zd-actions are intrinsically strong
random.
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INTRODUCTION

The concept of an intrinsical randomness for one-dimensional dynamical
systems (actions of the group Z on a Lebesgue space) has been introduced
by several authors (see ref. 2 and references therein).

The intrinsically random systems are conjugated via a Markovian
operator with a non-invertible semigroup of Markovian operators which
monotonically converges to equilibrium.

It is shown in ref. 2 that all Kolmogorov systems are intrinsically
random.

Our aim is to consider a multidimensional analogue of the concept of
the intrinsical randomness.

In this paper, we define concepts of an intrinsically weak randomness
(IWR) and an intrinsically strong randomness (ISR) of a Zd-action. These
definitions contain, apart from the direct extension of the one-dimensional
properties, a continuity condition, which has no corresponding property in
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the one-dimensional case. It is connected with the fact that the group Zd

equipped with the lexicographical order has gaps.
First we show that IWR Zd-actions are weakly mixing and ISR

Zd-actions are not rigid.
Our main result says that all Kolmogorov (Bernoulli) Zd-actions

satisfy the IWR (ISR) condition. If we interpret a Zd-action on a Lebesgue
space as a temporal dynamical system with d&1 symmetries, then an IWR
(ISR) Zd-action is conjugated to a semigroup of Markovian operators
which converges to equilibrium both along time evolution and the action
of the symmetries.

RESULT

Let (X, B, +) be a Lebesgue probability space and let N denote the
trivial sub-_-algebra of B.

We denote by Zd the group of d-dimensional integers. Let O be the
lexicographical order of Zd and let 6(N ) stand for the set of positive
(negative) vectors of Zd with respect to O.

Let 8 be a Zd-action on (X, B, +), i.e., 8 is a homomorphism of Zd

into the group Aut(X, +) of all measure-preserving automorphisms of
(X, B, +).

We denote by 8 g the automorphism of (X, B, +), being the image of
g # Zd under 8.

Let U=U8 be the unitary representation of Zd in L2(X, +) defined by
the formula

U g f = f b 8 g, f # L2(X, +), g # Zd

i.e., U acts by the Koopman operators associated with the automorphisms 8 g,
g # Zd.

For a given _-algebra A/B and a function f # L1(X, +), we denote
by EAf the conditional expectation of f given A. In particular, we put

Ef =ENf =|
X

f d+

We apply in the sequel the following well known property of condi-
tional expectations

U. b E A=E.&1A b U. (1)
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where . is a given measure-preserving automorphism of (X, B, +) and U.

is the Koopman unitary operator associated with ..
For a given finite measurable partition P of X, we denote by h(P, 8)

the mean entropy of P with respect to 8 and by h(8) the entropy of 8.(1, 7)

Now we recall the definition of a Kolmogorov action (K-action) of Zd

on a Lebesgue space.(1, 5)

An ordered pair (A, B) of subsets of Zd is said to be a cut if they form
a non-trivial partition of Zd and for every g # A and h # B we have gOh.

A cut (A, B) is called a gap if A does not contain the greatest element
and B does not contain the lowest element.

Definition 1. A Zd-action 8 is said to be a K-action if there exists
a _-algebra A/B with

(i) 8 gA/A for every g # 6,

(ii) the family (8 gA), g # Zd is continuous, i.e., for every gap (A, B)
of Zd it holds

�
g # A

8 gA= ,
g # B

8 gA

(iii) �g # Z d 8 gA=B,

(iv) �g # Z d 8 gA=N.

It has been shown in ref. 5 that 8 is a K-action iff 8 has a completely
positive entropy, i.e., h(P, 8)>0 for every non-trivial finite measurable
partition P of X.

The well-known examples of K-actions of Zd are Bernoullian actions
and Gaussian actions with absolutely continous spectral measures.

Goldstein has shown [4, Theorem 6.3] that every Poisson system of
periodic _-K-type (and in particular the Lorentz gas) is a K-action.

For simplicity of notations, we restrict ourselves in the sequel to the
case d=2. All our considerations may be easily extended to the general
case.

A Z2-action 8 is uniquely determined by the automorphisms
T=8(1, 0) and S=8(0, 1). We call them the standard automorphisms
defined by 8.

It is easy to observe that the definition of a K-action may be written
by the use of these automorphisms in the following way:

(i$) S&1A/A, T &1AS/A
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where

AS= �
+�

n=&�

S nA

(ii$) ��
n=&� SnA=T &1AS ,

(iii$) �+�
n=&� T nAS=B,

(iv$) �+�
n=&� T nAS=N.

A linear operator W of L2(X, +) is said to be doubly stochastic if it is
positive, W1=1 and E b W=E, i.e., if it is a Markov operator preserving +.

We shall consider in the sequel weak (w) and strong (s) limits of func-
tions defined on 6, and taking values in some Banach space.

We write

f (g) w�w x as g w� �

if for any =>0 there exists go # 6 with & f (g)&x&<= for all go go .
On the other hand the notation

f (g) w�s x as g w� �

means that for any =>0, there exists a finite subset F/6 such that
& f (g)&x&<= for all g # 6"F.

It is clear that

f (g) w�s x=O f (g) w�w x as g w� �

Definition 2. A Z2-action 8 is called intrinsically weak (strong)
(IWR (ISR)) random if there exists a doubly stochastic operator 4{E and
a semigroup (W g, g # 6) of doubly stochastic operators of L2(X, +) such
that

(a) for every g # 6, the following diagram commutes

L2(X, +) ww�4 L2(X, +)

U&g W g

L2(X, +) ww�4 L2(X, +)
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(b) the function g � &Wg f &, g # Z2 is non-increasing and continuous
for every f # L2(X, +), i.e.,

inf
g # A

&W gf &=sup
g # B

&W gf &

for every gap (A, B) of Z2,

(c) for every f # L2(X, +) with f �0 and Ef =1 the sequence
(&W gf &1&, g # 6) is non-increasing and

W gf w�w 1(W gf w�s 1)

when g � �.

It is obvious that every ISR-action is also an IWR-action.
First, we shall give a necessary condition for a Z2-action to be IWR

(ISR).
A Z2-action 8 is said to be weakly mixing if for every A, B # B

lim
n � �

1
n2 :

g # Rn

| +(8 gA & B)&+(A) +(B)|=0

where

Rn=[( p, q) # Z2; 0� p, q�n&1], n�1

Similarly as in the case of Z-actions one shows that 8 is weakly mixing
iff the equality

U (m, n)f =*m
1 *n

2 f, (m, n) # Z2, |*1|=|*2|=1, f # L2(X, +), f {0

implies that f is a constant a.e.

Proposition 1. Every IWR Z2-action is weakly mixing.

Proof. Let f # L2(X, +), f{0 and *1 , *2 # T be such that

U (m, n)f =*m
1 *n

2 f, (m, n) # Z2

It follows from (a) that

W (m, n)4f =4U &(m, n)f =*� m
1 *� n

2 f, (m, n) # 6

If 8 is IWR then

W (m, n)4f w�w E4f =Ef
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i.e.,

*� m
1 *� n

2 f w�w Ef

as (m, n) � �.
But this is possible only in the case *1=*2=1 and so f =Ef a.e. This

means that 8 is weakly mixing.

Remark 1. This result is to compare with a result of Misra(8) which
shows that an intrinsically random Z-action is necessarily mixing.

Now we recall the concept of a rigid Z2-action.
A Z2-action 8 is said to be rigid(3) if there exists a sequence

(mk , nk)/Z2 such that (mk , nk) � � (i.e., |mk |+|nk | � �) and

lim
k � �

+(8(mk , nk) A q A)=0

for every A # B.
It is easy to show that 8 is rigid, iff for some sequence (mk , nk) � �

and for every f # L2(X, +),

lim
k � �

U (mk , nk) f = f

Simple examples of rigid actions are actions with discrete spectrum
and a class of Gaussian actions with a singular spectral measure.(3, 6)

Proposition 2. If a Z2-action is ISR, then it is weakly mixing and
not rigid.

Proof. The first part of Proposition 2 follows at once from Proposition 1.
Let us now suppose 8 is ISR and rigid. Let (mk , nk) be a sequence in

Z2 such that (mk , nk) � � and U (mk , nk)f � f for every f # L2(X, +). One
can assume that (mk , nk) # 6, k�1. It follows from (a) that

W (mk , nk) b 4=4 b U &(mk , nk), k�1

Hence, taking the limit as k � �, one obtains

lim
k � �

W (mk , nk )(4f )=4f
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On the other hand the property (c) implies that

lim
k � �

W (mk , nk)(4f )=E4f =Ef

i.e., 4=E which is impossible.

Now we shall show our main results.

Theorem 1. Every K-action of Z2 on a Lebesgue space is IWR.

Proof. Let 8 be a K-action of Z2, U the associated unitary represen-
tation in L2(X, +) and A the _-algebra satisfying (i)�(iv).

We put

4=EA, W g=4 b U &g, g # Z2

It is clear that 4 and W g, g # Z2 are doubly stochastic and 4{E.
Let now g=(m, n) # 6. First we shall show that

4 b U &g=W g b 4 (2)

Let Ag=8 gA. It follows from (1) that

U &g b EA b U g=EAg (3)

Indeed, if T and S denote the standard automorphisms of 8 then (1)
implies

U &g b E A=U &m
T b U &n

S b EA=UT&m b US&n b EA

=UT&m b E S nA b US&n

=ET mS nA b UT&m b US&n=EAgU &g

Since g # 6 the invariance of A gives

EA b EAg=EA

Combining this equality with (3) we get (2).
The equality (2) implies that the operators W g, g # 6 form a semi-

group. Indeed, since the order o is compatible with the group operation
in Z2 we have

W g+ g$=4 b U &(g+ g$)=4 b U &g b U &g$

=W g b 4 b U &g$=W g b W g$

g, g$ # 6.
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Now we shall check (b). It is enough to prove that

lim
n � +�

&W (0, n)f &= lim
n � &�

&W (1, n)f &, f # L2(X, +)

Applying (1) we have

&W 0, n)f &=&EA b U &n
S f &=&U &n

S ES&nAf &=&ES&nAf &

and similarly

&W (1, n)f &=&U &1
T U &n

S ES&nT&1Af &=&ET&1S&nAf &

Taking the limit in the above two equalities and applying the condition
(ii$) we obtain (b).

In order to prove (c) we take a function f # L2(X, +) such that f �0
and Ef =1.

It follows from (3) that

&W gf &1&2=&W gf &2&2E(W gf )+1

=&EA b U &gf &2&1

=&U g b EA b U &gf &2&1

=&EA&g f &2&1, g # 6 (4)

If g, g$ # 6 and gO g$ then A&g#A&g$ and so

&EA&g f &�&EA&g$ f &

i.e., the sequence (&W gf &1&, g # 6) is non-increasing.
It follows from (iv) that

,
g # 6

A&g= ,
�

m=0

T &mAS=N

Let =>0 be arbitrary. By (4) and the Doob martingale convergence
theorem there exists mo # N such that, for every m>mo and n # Z, we have

&W (m, n)f &1&2=&E T&mS&nAf &2&1

�&ET&mAS f &2&1

<=2
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Hence it is clear that for g=(m, n)o (mo , no), where no is arbitrary,
we have &W gf &1&<=, i.e., W gf w�w 1 as g � �.

We shall show in the following example that there it may exist semi-
groups of doubly stochastic operators which satisfy (c) but don't satisfy (b).

Example. Let X be the infinite-dimensional torus TZ equipped with
the product _-algebra B, + be the product measure on X determined by the
Lebesgue measure * on T and let . be an irrational rotation on T.

Let 8=8. be a Z2-action on X generated by the following two
measure-preserving automorphisms T and S=S. of X defined by

(Tx)(n)=x(n+1), (Sx)(n)=.x(n), n # Z

i.e.,

8 g=T m b Sn, (m, n) # Z2

Let Q be a two-element generating partition for . and let P be the
partition of X induced by Q via the projection ?0 : X � T on the zero coor-
dinate, i.e., P=?&1

0 (Q).
Let A be the smallest _-algebra containing the partitions 8(m, n)P,

(m, n) # 6.
It is easy to see that

A=P 6 P&
S 6 (PS )&

T

where

P&
S = �

�

n=1

S&nP, PS= �
+�

n=&�

S nP, (PS )&
T = �

�

m=1

T &mPS

It is clear that A is invariant and

�
g # Z2

8 gA=B

Moreover, in our case S &1A=A. Indeed, since . is a rotation the
smallest _-algebra containing the partitions .&nQ, n�1 coincides with the
_-algebra F of the Lebesgue measurable sets of T. Hence P 6 P&

S =PS

and so A=PS 6 (PS )&
T =S&1A. Since + is the product measure the
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_-algebras T nPS , n # Z are independent. Therefore the Kolmogorov zero-
one law implies

,
g # Z2

8 gA= ,
�

n=0

T &n(PS )&
T =N

We put W g=EA b U &g, g # 6. One checks that (W g) is a semigroup
of doubly stochastic operators of L2(X, +) satisfying (c) in the same way as
in the proof of Theorem 1. Now we shall show that (b) is not satisfied.

Let f0(z)=z, z # T. The independence of PS and (PS )&
T gives

&W (0, n)f0 b ?0&=&ES&nAf0 b ?0&

=&EPS 6 (PS )&
T f0 b ?0&

=&EPS f0 b ?0&=& f0 b ?0&

=|
T

|z| *(dz)=1

On the other hand

lim
n � �

&W (1, n)f &=&ET&1AS f0 b ?0&

=&ET&1PS f0 b ?0&=0

i.e., (b) does not hold.
Let now 8 be a Bernoulli Z2-action on (X, B, +) with finite entropy

and let P be a finite measurable partition of X such that the partitions
8gP, g # Z2 are independent and generate B.

Theorem 2. Any Bernoulli Z2-action is ISR.

Proof. Let A be the past _-algebra generated by P, i.e., A is the
smallest _-algebra containing P and the partitions 8 gP, g # N. Applying
the standard automorphisms T and S of 8 we may write A in the form

A=P 6 P&
S 6 (PS )&

T

where

P&
S = �

�

n=1

S&nP, PS= �
+�

n=&�

SnP
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It is well known(5) that A satisfies the conditions (i$)�(iv$). Let W g,
g # P be the doubly stochastic operator defined in the proof of Theorem 1.

It is enough to show that

W gf w�s 1 as g w� �

for every f # L2(X, +), f �0 and Ef =1. We denote by Bn the _-algebra
generated by all partitions of the form 8hP, h � Rn*, where

Rn*=[(i, j) # Z2; &n�i, j�n], n�1

By the Kolmogorow zero-one law we have

,
�

n=1

Bn=N

Let =>0 be arbitrary. By the Doob martingale convergence theorem there
exists n0 such that

&EBn f &2<1+= for n>n0

If g # 6"Rn , n>n0 then A&g/Bn and so

&W gf &1&2=&EA&g f &2&1�&EBn f &2&1<=

This means that

W gf w�s 1 as g w� �

Remark 2. It is not clear whether any K-action of Z2 is ISR.
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