Intrinsical Randomness of Kolmogorov \mathbb{Z}^d -Actions on a Lebesgue Space

M. Courbage¹ and B. Kamiński²

Received September 17, 1997; final November 10, 1998

We introduce a concept of an intrinsically weak and strong randomness of a \mathbb{Z}^d -action on a Lebesgue space and we show that Kolmogorov \mathbb{Z}^d -actions are intrinsically weak random, and Bernoulli \mathbb{Z}^d -actions are intrinsically strong random.

KEY WORDS: Intrinsically weak randomness; intrinsically strong randomness; Kolmogorov \mathbb{Z}^{d} -actions; Bernoulli \mathbb{Z}^{d} -actions.

INTRODUCTION

The concept of an intrinsical randomness for one-dimensional dynamical systems (actions of the group \mathbb{Z} on a Lebesgue space) has been introduced by several authors (see ref. 2 and references therein).

The intrinsically random systems are conjugated via a Markovian operator with a non-invertible semigroup of Markovian operators which monotonically converges to equilibrium.

It is shown in ref. 2 that all Kolmogorov systems are intrinsically random.

Our aim is to consider a multidimensional analogue of the concept of the intrinsical randomness.

In this paper, we define concepts of an intrinsically weak randomness (IWR) and an intrinsically strong randomness (ISR) of a \mathbb{Z}^d -action. These definitions contain, apart from the direct extension of the one-dimensional properties, a continuity condition, which has no corresponding property in

¹ Laboratoire de Probabilité, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France.

² Faculty of Mathematics and Informatics, Nicholas Copernicus University, 87-100 Toruń, Poland.

the one-dimensional case. It is connected with the fact that the group \mathbb{Z}^d equipped with the lexicographical order has gaps.

First we show that IWR \mathbb{Z}^d -actions are weakly mixing and ISR \mathbb{Z}^d -actions are not rigid.

Our main result says that all Kolmogorov (Bernoulli) \mathbb{Z}^{d} -actions satisfy the IWR (ISR) condition. If we interpret a \mathbb{Z}^{d} -action on a Lebesgue space as a temporal dynamical system with d-1 symmetries, then an IWR (ISR) \mathbb{Z}^{d} -action is conjugated to a semigroup of Markovian operators which converges to equilibrium both along time evolution and the action of the symmetries.

RESULT

Let (X, \mathcal{B}, μ) be a Lebesgue probability space and let \mathcal{N} denote the trivial sub- σ -algebra of \mathcal{B} .

We denote by \mathbb{Z}^d the group of *d*-dimensional integers. Let \prec be the lexicographical order of \mathbb{Z}^d and let $\Pi(N)$ stand for the set of positive (negative) vectors of \mathbb{Z}^d with respect to \prec .

Let Φ be a \mathbb{Z}^d -action on (X, \mathcal{B}, μ) , i.e., Φ is a homomorphism of \mathbb{Z}^d into the group Aut (X, μ) of all measure-preserving automorphisms of (X, \mathcal{B}, μ) .

We denote by Φ^g the automorphism of (X, \mathcal{B}, μ) , being the image of $g \in \mathbb{Z}^d$ under Φ .

Let $U = U_{\Phi}$ be the unitary representation of \mathbb{Z}^d in $L^2(X, \mu)$ defined by the formula

$$U^{g}f = f \circ \Phi^{g}, \qquad f \in L^{2}(X, \mu), \qquad g \in \mathbb{Z}^{d}$$

i.e., *U* acts by the Koopman operators associated with the automorphisms Φ^g , $g \in \mathbb{Z}^d$.

For a given σ -algebra $\mathscr{A} \subset \mathscr{B}$ and a function $f \in L^1(X, \mu)$, we denote by $E^{\mathscr{A}}f$ the conditional expectation of f given \mathscr{A} . In particular, we put

$$Ef = E^{\mathcal{N}}f = \int_X f \, d\mu$$

We apply in the sequel the following well known property of conditional expectations

$$U_{\varphi} \circ E^{\mathscr{A}} = E^{\varphi^{-1} \mathscr{A}} \circ U_{\varphi} \tag{1}$$

where φ is a given measure-preserving automorphism of (X, \mathcal{B}, μ) and U_{φ} is the Koopman unitary operator associated with φ .

For a given finite measurable partition *P* of *X*, we denote by $h(P, \Phi)$ the mean entropy of *P* with respect to Φ and by $h(\Phi)$ the entropy of Φ .^(1,7)

Now we recall the definition of a Kolmogorov action (K-action) of \mathbb{Z}^d on a Lebesgue space.^(1, 5)

An ordered pair (A, B) of subsets of \mathbb{Z}^d is said to be a cut if they form a non-trivial partition of \mathbb{Z}^d and for every $g \in A$ and $h \in B$ we have $g \prec h$.

A cut (A, B) is called a gap if A does not contain the greatest element and B does not contain the lowest element.

Definition 1. A \mathbb{Z}^d -action Φ is said to be a K-action if there exists a σ -algebra $\mathscr{A} \subset \mathscr{B}$ with

(i) $\Phi^g \mathscr{A} \subset \mathscr{A}$ for every $g \in \Pi$,

(ii) the family $(\Phi^g \mathscr{A})$, $g \in \mathbb{Z}^d$ is continuous, i.e., for every gap (A, B) of \mathbb{Z}^d it holds

$$\bigvee_{g \in A} \Phi^g \mathscr{A} = \bigcap_{g \in B} \Phi^g \mathscr{A}$$

(iii)
$$\bigvee_{g \in \mathbb{Z}^d} \Phi^g \mathscr{A} = \mathscr{B},$$

(iv)
$$\bigcap_{g \in \mathbb{Z}^d} \Phi^g \mathscr{A} = \mathscr{N}.$$

It has been shown in ref. 5 that Φ is a K-action iff Φ has a completely positive entropy, i.e., $h(P, \Phi) > 0$ for every non-trivial finite measurable partition P of X.

The well-known examples of K-actions of \mathbb{Z}^d are Bernoullian actions and Gaussian actions with absolutely continous spectral measures.

Goldstein has shown [4, Theorem 6.3] that every Poisson system of periodic σ -K-type (and in particular the Lorentz gas) is a K-action.

For simplicity of notations, we restrict ourselves in the sequel to the case d=2. All our considerations may be easily extended to the general case.

A \mathbb{Z}^2 -action Φ is uniquely determined by the automorphisms $T = \Phi^{(1,0)}$ and $S = \Phi^{(0,1)}$. We call them the standard automorphisms defined by Φ .

It is easy to observe that the definition of a K-action may be written by the use of these automorphisms in the following way:

(i')
$$S^{-1}\mathscr{A} \subset \mathscr{A}, T^{-1}\mathscr{A}_S \subset \mathscr{A}$$

where

$$\mathscr{A}_{S} = \bigvee_{n = -\infty}^{+\infty} S^{n} \mathscr{A}$$

(ii')
$$\bigcap_{n=-\infty}^{\infty} S^n \mathscr{A} = T^{-1} \mathscr{A}_S,$$

(iii')
$$\bigvee_{n=-\infty}^{+\infty} T^n \mathscr{A}_S = \mathscr{B},$$

(iv')
$$\bigcap_{n=-\infty}^{+\infty} T^n \mathscr{A}_S = \mathscr{N}.$$

A linear operator W of $L^2(X, \mu)$ is said to be doubly stochastic if it is positive, W1 = 1 and $E \circ W = E$, i.e., if it is a Markov operator preserving μ .

We shall consider in the sequel weak (w) and strong (s) limits of functions defined on Π , and taking values in some Banach space.

We write

$$f(g) \xrightarrow{w} x$$
 as $g \longrightarrow \infty$

if for any $\varepsilon > 0$ there exists $g_o \in \Pi$ with $||f(g) - x|| < \varepsilon$ for all $g \succ g_o$.

On the other hand the notation

$$f(g) \xrightarrow{s} x$$
 as $g \longrightarrow \infty$

means that for any $\varepsilon > 0$, there exists a finite subset $F \subset \Pi$ such that $||f(g) - x|| < \varepsilon$ for all $g \in \Pi \setminus F$.

It is clear that

$$f(g) \xrightarrow{s} x \Longrightarrow f(g) \xrightarrow{w} x$$
 as $g \longrightarrow \infty$

Definition 2. A \mathbb{Z}^2 -action Φ is called intrinsically weak (strong) (IWR (ISR)) random if there exists a doubly stochastic operator $\Lambda \neq E$ and a semigroup (W^g , $g \in \Pi$) of doubly stochastic operators of $L^2(X, \mu)$ such that

(a) for every $g \in \Pi$, the following diagram commutes

$$\begin{array}{c} L^{2}(X,\mu) \xrightarrow{A} L^{2}(X,\mu) \\ \stackrel{U^{-g}}{\longrightarrow} & \downarrow^{W^{g}} \\ L^{2}(X,\mu) \xrightarrow{A} L^{2}(X,\mu) \end{array}$$

(b) the function $g \to ||W_g f||$, $g \in \mathbb{Z}^2$ is non-increasing and continuous for every $f \in L^2(X, \mu)$, i.e.,

$$\inf_{g \in A} \|W^g f\| = \sup_{g \in B} \|W^g f\|$$

for every gap (A, B) of \mathbb{Z}^2 ,

(c) for every $f \in L^2(X, \mu)$ with $f \ge 0$ and Ef = 1 the sequence $(||W^{g}f - 1||, g \in \Pi)$ is non-increasing and

$$W^{g}f \xrightarrow{w} 1(W^{g}f \xrightarrow{s} 1)$$

when $g \to \infty$.

It is obvious that every ISR-action is also an IWR-action.

First, we shall give a necessary condition for a \mathbb{Z}^2 -action to be IWR (ISR).

A \mathbb{Z}^2 -action Φ is said to be weakly mixing if for every $A, B \in \mathscr{B}$

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{g \in R_n} |\mu(\Phi^g A \cap B) - \mu(A) \ \mu(B)| = 0$$

where

$$R_n = \{ (p, q) \in \mathbb{Z}^2; 0 \leq p, q \leq n-1 \}, \qquad n \ge 1$$

Similarly as in the case of \mathbb{Z} -actions one shows that Φ is weakly mixing iff the equality

$$U^{(m,n)}f = \lambda_1^m \lambda_2^n f, \quad (m,n) \in \mathbb{Z}^2, \quad |\lambda_1| = |\lambda_2| = 1, \quad f \in L^2(X,\mu), \quad f \neq 0$$

implies that f is a constant a.e.

Proposition 1. Every IWR \mathbb{Z}^2 -action is weakly mixing.

Proof. Let $f \in L^2(X, \mu)$, $f \neq 0$ and $\lambda_1, \lambda_2 \in \mathbb{T}$ be such that

 $U^{(m,n)}f = \lambda_1^m \lambda_2^n f, \qquad (m,n) \in \mathbb{Z}^2$

It follows from (a) that

$$W^{(m,n)}\Lambda f = \Lambda U^{-(m,n)}f = \bar{\lambda}_1^m \bar{\lambda}_2^n f, \qquad (m,n) \in \Pi$$

If Φ is IWR then

$$W^{(m,n)}\Lambda f \xrightarrow{w} E\Lambda f = Ef$$

i.e.,

786

 $\bar{\lambda}_1^m \bar{\lambda}_2^n f \xrightarrow{w} Ef$

as $(m, n) \rightarrow \infty$.

But this is possible only in the case $\lambda_1 = \lambda_2 = 1$ and so f = Ef a.e. This means that Φ is weakly mixing.

Remark 1. This result is to compare with a result of $Misra^{(8)}$ which shows that an intrinsically random \mathbb{Z} -action is necessarily mixing.

Now we recall the concept of a rigid \mathbb{Z}^2 -action.

A \mathbb{Z}^2 -action Φ is said to be rigid⁽³⁾ if there exists a sequence $(m_k, n_k) \subset \mathbb{Z}^2$ such that $(m_k, n_k) \to \infty$ (i.e., $|m_k| + |n_k| \to \infty$) and

$$\lim_{k \to \infty} \mu(\Phi^{(m_k, n_k)} A \bigtriangleup A) = 0$$

for every $A \in \mathcal{B}$.

It is easy to show that Φ is rigid, iff for some sequence $(m_k, n_k) \to \infty$ and for every $f \in L^2(X, \mu)$,

$$\lim_{k \to \infty} U^{(m_k, n_k)} f = f$$

Simple examples of rigid actions are actions with discrete spectrum and a class of Gaussian actions with a singular spectral measure.^(3, 6)

Proposition 2. If a \mathbb{Z}^2 -action is ISR, then it is weakly mixing and not rigid.

Proof. The first part of Proposition 2 follows at once from Proposition 1.

Let us now suppose Φ is ISR and rigid. Let (m_k, n_k) be a sequence in \mathbb{Z}^2 such that $(m_k, n_k) \to \infty$ and $U^{(m_k, n_k)}f \to f$ for every $f \in L^2(X, \mu)$. One can assume that $(m_k, n_k) \in \Pi$, $k \ge 1$. It follows from (a) that

$$W^{(m_k, n_k)} \circ \Lambda = \Lambda \circ U^{-(m_k, n_k)}, \qquad k \ge 1$$

Hence, taking the limit as $k \to \infty$, one obtains

$$\lim_{k \to \infty} W^{(m_k, n_k)}(\Lambda f) = \Lambda f$$

On the other hand the property (c) implies that

$$\lim_{k \to \infty} W^{(m_k, n_k)}(\Lambda f) = E\Lambda f = Ef$$

i.e., $\Lambda = E$ which is impossible.

Now we shall show our main results.

Theorem 1. Every K-action of \mathbb{Z}^2 on a Lebesgue space is IWR.

Proof. Let Φ be a K-action of \mathbb{Z}^2 , U the associated unitary representation in $L^2(X, \mu)$ and \mathscr{A} the σ -algebra satisfying (i)–(iv).

We put

$$\Lambda = E^{\mathscr{A}}, \qquad W^g = \Lambda \circ U^{-g}, \qquad g \in \mathbb{Z}^2$$

It is clear that Λ and W^g , $g \in \mathbb{Z}^2$ are doubly stochastic and $\Lambda \neq E$. Let now $g = (m, n) \in \Pi$. First we shall show that

$$\Lambda \circ U^{-g} = W^g \circ \Lambda \tag{2}$$

Let $\mathscr{A}_{g} = \Phi^{g} \mathscr{A}$. It follows from (1) that

$$U^{-g} \circ E^{\mathscr{A}} \circ U^{g} = E^{\mathscr{A}_{g}} \tag{3}$$

Indeed, if T and S denote the standard automorphisms of Φ then (1) implies

$$\begin{split} U^{-g} \circ E^{\mathscr{A}} &= U_T^{-m} \circ U_S^{-n} \circ E^{\mathscr{A}} = U_{T^{-m}} \circ U_{S^{-n}} \circ E^{\mathscr{A}} \\ &= U_{T^{-m}} \circ E^{S^n \mathscr{A}} \circ U_{S^{-n}} \\ &= E^{T^m S^n \mathscr{A}} \circ U_{T^{-m}} \circ U_{S^{-n}} = E^{\mathscr{A}_g} U^{-g} \end{split}$$

Since $g \in \Pi$ the invariance of \mathscr{A} gives

$$E^{\mathscr{A}} \circ E^{\mathscr{A}_g} = E^{\mathscr{A}}$$

Combining this equality with (3) we get (2).

The equality (2) implies that the operators W^g , $g \in \Pi$ form a semigroup. Indeed, since the order \succ is compatible with the group operation in \mathbb{Z}^2 we have

$$W^{g+g'} = \Lambda \circ U^{-(g+g')} = \Lambda \circ U^{-g} \circ U^{-g'}$$
$$= W^g \circ \Lambda \circ U^{-g'} = W^g \circ W^{g'}$$

 $g, g' \in \Pi$.

Now we shall check (b). It is enough to prove that

$$\lim_{n \to +\infty} \|W^{(0,n)}f\| = \lim_{n \to -\infty} \|W^{(1,n)}f\|, \qquad f \in L^2(X,\mu)$$

Applying (1) we have

$$||W^{0,n}f|| = ||E^{\mathscr{A}} \circ U_{S}^{-n}f|| = ||U_{S}^{-n}E^{S^{-n}\mathscr{A}}f|| = ||E^{S^{-n}\mathscr{A}}f||$$

and similarly

$$\|W^{(1,n)}f\| = \|U_T^{-1}U_S^{-n}E^{S^{-n}T^{-1}\mathscr{A}}f\| = \|E^{T^{-1}S^{-n}\mathscr{A}}f\|$$

Taking the limit in the above two equalities and applying the condition (ii') we obtain (b).

In order to prove (c) we take a function $f \in L^2(X, \mu)$ such that $f \ge 0$ and Ef = 1.

It follows from (3) that

$$\| W^{g} f - 1 \|^{2} = \| W^{g} f \|^{2} - 2E(W^{g} f) + 1$$

$$= \| E^{\mathscr{A}} \circ U^{-g} f \|^{2} - 1$$

$$= \| U^{g} \circ E^{\mathscr{A}} \circ U^{-g} f \|^{2} - 1$$

$$= \| E^{\mathscr{A}_{-g}} f \|^{2} - 1, \qquad g \in \Pi$$
(4)

If $g, g' \in \Pi$ and $g \prec g'$ then $\mathscr{A}_{-g} \supset \mathscr{A}_{-g'}$ and so

 $\|E^{\mathscr{A}_{-g}}f\| \geqslant \|E^{\mathscr{A}_{-g'}}f\|$

i.e., the sequence $(||W^g f - 1||, g \in \Pi)$ is non-increasing.

It follows from (iv) that

$$\bigcap_{g \in \Pi} \mathscr{A}_{-g} = \bigcap_{m=0}^{\infty} T^{-m} \mathscr{A}_{S} = \mathscr{N}$$

Let $\varepsilon > 0$ be arbitrary. By (4) and the Doob martingale convergence theorem there exists $m_o \in \mathbb{N}$ such that, for every $m > m_o$ and $n \in \mathbb{Z}$, we have

$$\|W^{(m,n)}f - 1\|^{2} = \|E^{T^{-m}S^{-n}\mathscr{A}}f\|^{2} - 1$$
$$\leq \|E^{T^{-m}\mathscr{A}_{S}}f\|^{2} - 1$$
$$< \varepsilon^{2}$$

Intrinsical Randomness of Kolmogorov Z^d-Actions

Hence it is clear that for $g = (m, n) \succ (m_o, n_o)$, where n_o is arbitrary, we have $||W^g f - 1|| < \varepsilon$, i.e., $W^g f \xrightarrow{w} 1$ as $g \to \infty$.

We shall show in the following example that there it may exist semigroups of doubly stochastic operators which satisfy (c) but don't satisfy (b).

Example. Let X be the infinite-dimensional torus $\mathbb{T}^{\mathbb{Z}}$ equipped with the product σ -algebra \mathscr{B} , μ be the product measure on X determined by the Lebesgue measure λ on \mathbb{T} and let φ be an irrational rotation on \mathbb{T} .

Let $\Phi = \Phi_{\varphi}$ be a \mathbb{Z}^2 -action on X generated by the following two measure-preserving automorphisms T and $S = S_{\varphi}$ of X defined by

$$(Tx)(n) = x(n+1),$$
 $(Sx)(n) = \varphi x(n),$ $n \in \mathbb{Z}$

i.e.,

$$\Phi^g = T^m \circ S^n, \qquad (m, n) \in \mathbb{Z}^2$$

Let Q be a two-element generating partition for φ and let P be the partition of X induced by Q via the projection $\pi_0: X \to \mathbb{T}$ on the zero coordinate, i.e., $P = \pi_0^{-1}(Q)$.

Let \mathscr{A} be the smallest σ -algebra containing the partitions $\Phi^{(m,n)}P$, $(m,n) \in \Pi$.

It is easy to see that

$$\mathscr{A} = P \lor P_S^- \lor (P_S)_T^-$$

where

$$P_{S}^{-} = \bigvee_{n=1}^{\infty} S^{-n}P, \qquad P_{S} = \bigvee_{n=-\infty}^{+\infty} S^{n}P, \qquad (P_{S})_{T}^{-} = \bigvee_{m=1}^{\infty} T^{-m}P_{S}$$

It is clear that \mathscr{A} is invariant and

$$\bigvee_{g \in \mathbb{Z}^2} \Phi^g \mathscr{A} = \mathscr{B}$$

Moreover, in our case $S^{-1}\mathscr{A} = \mathscr{A}$. Indeed, since φ is a rotation the smallest σ -algebra containing the partitions $\varphi^{-n}Q$, $n \ge 1$ coincides with the σ -algebra \mathscr{F} of the Lebesgue measurable sets of \mathbb{T} . Hence $P \lor P_S^- = P_S$ and so $\mathscr{A} = P_S \lor (P_S)_T^- = S^{-1}\mathscr{A}$. Since μ is the product measure the

 σ -algebras $T^n P_s$, $n \in \mathbb{Z}$ are independent. Therefore the Kolmogorov zeroone law implies

$$\bigcap_{g \in \mathbb{Z}^2} \Phi^g \mathscr{A} = \bigcap_{n=0}^{\infty} T^{-n} (P_S)_T^- = \mathscr{N}$$

We put $W^g = E^{\mathscr{A}} \circ U^{-g}$, $g \in \Pi$. One checks that (W^g) is a semigroup of doubly stochastic operators of $L^2(X, \mu)$ satisfying (c) in the same way as in the proof of Theorem 1. Now we shall show that (b) is not satisfied.

Let $f_0(z) = z, z \in \mathbb{T}$. The independence of P_s and $(P_s)_T^-$ gives

$$\|W^{(0,n)}f_0 \circ \pi_0\| = \|E^{S^{-n}\mathscr{A}}f_0 \circ \pi_0\|$$

= $\|E^{P_S \vee (P_S)\overline{T}}f_0 \circ \pi_0\|$
= $\|E^{P_S}f_0 \circ \pi_0\| = \|f_0 \circ \pi_0\|$
= $\int_{\mathbb{T}} |z| \ \lambda(dz) = 1$

On the other hand

$$\lim_{n \to \infty} \|W^{(1,n)}f\| = \|E^{T^{-1}\mathscr{A}_S}f_0 \circ \pi_0\|$$
$$= \|E^{T^{-1}P_S}f_0 \circ \pi_0\| = 0$$

i.e., (b) does not hold.

Let now Φ be a Bernoulli \mathbb{Z}^2 -action on (X, \mathcal{B}, μ) with finite entropy and let *P* be a finite measurable partition of *X* such that the partitions $\Phi^g P$, $g \in \mathbb{Z}^2$ are independent and generate \mathcal{B} .

Theorem 2. Any Bernoulli \mathbb{Z}^2 -action is ISR.

Proof. Let \mathscr{A} be the past σ -algebra generated by P, i.e., \mathscr{A} is the smallest σ -algebra containing P and the partitions $\Phi^{g}P$, $g \in N$. Applying the standard automorphisms T and S of Φ we may write \mathscr{A} in the form

$$\mathscr{A} = P \lor P_S^- \lor (P_S)_T^-$$

where

$$P_{S}^{-} = \bigvee_{n=1}^{\infty} S^{-n}P, \qquad P_{S} = \bigvee_{n=-\infty}^{+\infty} S^{n}P$$

Intrinsical Randomness of Kolmogorov Z^d-Actions

It is well known⁽⁵⁾ that \mathscr{A} satisfies the conditions (i')–(iv'). Let W^g , $g \in P$ be the doubly stochastic operator defined in the proof of Theorem 1.

It is enough to show that

$$W^g f \xrightarrow{s} 1$$
 as $g \longrightarrow \infty$

for every $f \in L^2(X, \mu)$, $f \ge 0$ and Ef = 1. We denote by \mathscr{B}_n the σ -algebra generated by all partitions of the form $\Phi^h P$, $h \notin R_n^*$, where

$$R_n^* = \{ (i, j) \in \mathbb{Z}^2; -n \leq i, j \leq n \}, \qquad n \geq 1$$

By the Kolmogorow zero-one law we have

$$\bigcap_{n=1}^{\infty} \mathscr{B}_n = \mathscr{N}$$

Let $\varepsilon > 0$ be arbitrary. By the Doob martingale convergence theorem there exists n_0 such that

$$\|E^{\mathscr{B}_n}f\|^2 < 1 + \varepsilon \qquad \text{for} \quad n > n_0$$

If $g \in \Pi \setminus R_n$, $n > n_0$ then $\mathscr{A}_{-g} \subset \mathscr{B}_n$ and so

$$\|W^{g}f - 1\|^{2} = \|E^{\mathscr{A}_{-g}}f\|^{2} - 1 \leqslant \|E^{\mathscr{B}_{n}}f\|^{2} - 1 < \varepsilon$$

This means that

$$W^g f \xrightarrow{s} 1$$
 as $g \longrightarrow \infty$

Remark 2. It is not clear whether any *K*-action of \mathbb{Z}^2 is ISR.

ACKNOWLEDGMENT

The second author was supported by KBN Grant 2P 301031107.

REFERENCES

- J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahr. verw. Geb. 25:11–30 (1972).
- M. Courbage, S. Goldstein, and B. Misra, On intrinsic randomness of dynamical systems, J. Stat. Phys. 25:111–126 (1981).
- S. Ferenczi and B. Kamiński, Zero entropy and directional Bernoullicity of a Gaussian Z²-action, Proc. Amer. Math. Soc. 123:3079–3083 (1995).
- S. Goldstein, Space-time ergodic proprietes of systems of infinitely many independent particles, *Commun. Math. Phys.* 39:303–327 (1975).

- 5. B. Kamiński, The theory of invariant partitions for \mathbb{Z}^d -actions, *Bull. Polish Acad. Sci. Math.* **29**:349–362 (1981).
- B. Kamiński and K. K. Park, On the directional entropy for Z²-actions on a Lebesgue space, *Studia Math.* 133:39–51 (1999).
- 7. Y. Katznelson and B. Weiss, Commuting measure-preserving transformations, *Isr. J. Math.* **12**:161–173 (1972).
- B. Misra, Nonequilibrium entropy, Lyapunov variables, and ergodic properties of classical systems, *Proc. Natl. Acad. Sci. USA* 75:1627–1631 (1978).